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Fig. 1: When the user enters a word, he reads the letter silently (left), and the
facial tracker captures the lip shape in a sequence (middle). The head motion
of the user captured by VR HMDs is used for the auxiliary selection of a word
from the four predicted candidates (right).

Abstract. Text entry is an important task in virtual reality (VR), and
most existing methods require hand involvement, while hands-free typing
has great potential for applications in mobile scenarios. Existing hands-
free text entry methods are usually implemented by combining the head
and eyes with techniques such as Dwell, Blink and Gesture, which can
easily fatigue the user. In this paper, we propose LipText, a lip-tracking-
based text entry method in VR. We use a neural network to perform
letter-level prediction on the lip data captured by the facial tracker and
use head-based selection as an auxiliary to improve the accuracy. We
conduct a user study to evaluate our method, the results show a typing
speed of 8.63 WPM for the novice group, 9.81 WPM for the potential
expert group, and the highest recorded typing speed is 11.13 WPM
achieved by a potential expert. Our method is also novice-friendly, and
their typing speed increased by 64.38% over a six-day practice.
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1 Introduction

Text entry is a common application in virtual reality (VR), where users need to
communicate with each other and record information. Existing text entry methods
usually require hand involvement and use devices such as physical keyboards,
touch screens, sensors, and handles for input. While in mobile scenarios, these
devices impose an additional burden, and the user’s hands may be occupied, so
it makes sense to explore hand-free text entry techniques. It is also beneficial for
those users with hand motion deficits.
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Several existing works have explored hands-free input. RingText [23] allows
the user to use head motions to control a cursor for selection, eliminating the
need for the user to hold a specialized input device to select letters. iText [12] is a
technique for text entry in augmented reality (AR) systems based on an imaginary
keyboard, and the keyboard area is transparent. Although both methods achieve
efficient typing speeds (13.24 WPM for RingText and 13.76 WPM for iText),
they both require the user to focus on the keyboard interface, which tends to
make the user feel fatigued, and it is also not easy to select a target letter from
the 26 letters. We think that introducing new interaction methods may provide
a new solution for hands-free typing and provide a more natural interaction
experience, and narrowing the range of letters to select when typing can also
reduce the user’s fatigue.

In this paper, we propose LipText, a lip tracking-based text entry method in
VR. Firstly, we set up a facial tracker on the VR HMDs to capture the user’s lip
shapes. After that, the lip shape sequences with 37 feature points are obtained,
which we segment and denoise to generate the lip shape features of the input
letters. Secondly, we use a neural network to classify the lip shape features to
recognize the input letters. Thirdly, we adopt a head motion-based auxiliary
selection method to improve the correctness of the text entry. We design a user
study to evaluate our LipText. The results show that the typing speed is about 9.8
WPM, and a potential expert can type at 11.13 WPM. The average NCER and
TER are 2.43% and 6.66% respectively. Our method also has good learnability,
for the novices, the typing speed can be raised by 64.38% through a six-day
practice. Figure 1 shows the diagram of inputting the letter ‘W’ using our lip
tracking-based text entry method.

In summary, the contributions of this paper are as follows:

– We propose a lip tracking-based text entry pipeline in VR. We introduce
a new interaction method of silent reading into the hands-free text entry
techniques for the first time.

– We introduce a neural network-based letter recognition method for the lip
tracking data captured by the facial tracker.

– We design a user study to evaluate the performance of our LipText.

2 Related work

In this section, we review the existing text entry methods in VR and hands-free
text entry techniques.

2.1 Text Entry in VR
Unlike input text in reality, in VR users need to wear HMDs and type in a virtual
environment (VE), which creates visual and interactive differences to text entry.
One possible solution is to integrate the physical keyboard directly to the VR
system, which can achieve typing efficiency similar to that in the real world [9].
The above methods requires the user to sit down and type, while Pham et al.
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[17] proposed the HawKey application for mobile scenarios, where the user wore
a tray in front of him to place the keyboard on it.

Speech-based techniques are also capable of efficient typing, but due to it
being difficult to correct errors [21], it is usually presented in a multimodal form.
Adhikary et al. [1] combined hand tracking and speech in VR, allowing the user
to speak a sentence and then correct the errors on a mid-air keyboard by avatar
hands. Touch screen-based techniques introduces a touch screen, such as tablets
and smartphones, to perform text entry. Gugenheimer et al. [6] mounted a multi-
touch surface on the back of a VR HMD, which allowed for precise interaction
and thus performed text entry in mobile scenarios. Mid-air typing techniques
are also solutions for mobile scenarios, mostly requiring sensors to detect the
user’s typing behavior. Whitmire et al. [22] proposed DigiTouch, which enabled
thumb-to-finger touch interaction for text entry through a glove with continuous
touch tracking, and similar techniques were available in [10, 24].

Head-based techniques focus on the user using head movements to control the
cursor for selections on a virtual keyboard. Yu et al. [25] explored three head-based
text entry techniques: Tap, Dwell, and Gesture, with Gesture outperforming
the other two. Xu et al. [23] proposed RingText, where the user used dwell-free
technique on a circular layout with two concentric circles for input. The handle-
based techniques mainly use the handle controllers provided in the existing VR
systems for input. Yu et al. [26] proposed PizzaText, which chunked 26 letters and
used a handle with two joysticks for two-step selection. Jiang et al. [8] proposed
HiPad, which used a handle with a circular touchpad, and a circular virtual
keyboard to support single-hand input.

The existing techniques in VR usually use people’s hands, heads, voices, and
eyes to perform text input, while the mouth has not been explored as a potential
input source. Silent reading avoids to some extent the problems associated with
speech-based techniques and, similar to speech techniques, it may be able to
support letter-level, word-level, and sentence-level input as well.

2.2 Hands-free Text Entry Techniques

Hands-free text entry techniques are being explored due to the possible limitations
of devices, or people’s hands being occupied. Speech-based techniques are possible
to achieve this, transcribing people’s speech into text through speech recognition.
Ruan et al. [18] used a deep learning-based speech recognition system and
compared it to a smartphone’s default keyboard, showing that transcribing text
using speech was nearly three times faster than on a touchscreen keyboard and
that it had a higher uncorrected error rate. Although speech-based techniques
are fast to type, their effectiveness suffers in noisy environments [19], and people
avoid using them in public for the security of privacy. Some techniques that utilize
the head and eyes are also capable of hands-free input, Dwell [25], Dwell-free,
Gesture, and Blink are common solutions. E. Mott et al. [16] proposed cascaded
gaze typing, which dynamically adjusted the dwell time of keys in the on-screen
keyboard based on the likelihood of the next key being selected and the position
of the key on the keyboard.
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Compared with the dwell techniques, the dwell-free techniques eliminate the
cost of dwell time and improve the selection efficiency. RingText [23] adopted
hands-free technique where the user used head movements to control the cursor
to type on a circular keyboard. Typing with blink was also a dwell-free technique,
and the findings of [13] showed it was superior to the dwell technique. Gesture
was also a hands-free technique that used head movements to draw a path on
the keyboard through letters of a word in order, it had been found to work well
on both visible [25] and invisible [12] keyboards.

The above methods usually require the user to focus on the virtual keyboard
(the invisible keyboard still has an input area) and control the cursor for selection,
which can lead to user fatigue, and it is attractive to free the user’s attention
from the virtual keyboard.

3 Method
Our lip tracking-based text entry method takes the lip shape data stream captured
by the facial tracker and head motion captured by VR HMDs as inputs. The
output is the letter or word the user intends to enter. Our method has three main
steps: lip shape sequences generation, letter recognition, and auxiliary selection.
The pipeline is shown in Figure 2.

Fig. 2: The pipeline of our lip tracking-based text entry method.

3.1 Lip shape sequences generation
In this section, we capture lip shape with the facial tracker, segment the data
stream into the sequences of a single letter with a normalized length, and denoise
the sequences.

Lip shape feature capture We use the HTC VIVE facial tracker to capture
lip shape features when users read the letters silently. It tracks 37 blend shapes
related to the lip shape, including the points on the lip, jaw, teeth, tongue, chin,
and cheeks. Its tracking refresh rate is 60Hz, and latency is less than 10ms. The
device is also able to access the VR HMDs quickly. Therefore, our method can
easily be integrated into the existing VR HMDs-based systems. Our method
can achieve high accuracy and low latency lip shape tracking even in low light
environments since the device uses an infrared camera. Figure 1 left shows the
user wearing the VR HMD with a facial tracker mounted on the bottom of it.
When the user reads a letter of words, the device outputs the 37-dimension vector
stream that presents the changes of lip shapes.
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Fig. 3: The one-dimensional data in the lip shape 37-dimensional data when the
user reads a is given by the orange line, which can be divided into smooth and
abrupt-change states. The blue line represents the noise data.

Data stream segmentation The 37-dimensional vector stream captured is
continuous and must be segmented into normalized sequences for each letter
before letter recognition. The orange line in Figure 3 shows the change in one
of the 37 dimensions as the user reads the letter ‘a’, where the lips move from
closed to open and then closed again. Our approach to segmenting the continuous
data stream is based on detecting abrupt-change points. The state where the
lips remain closed is referred to as the “smooth state” (frames 0-14), and the
point where the data sharply fluctuates from this smooth state is called the
“abrupt-change point” (frame 15). We designed a segmentation algorithm 1 to
capture the sequence of fluctuating data as the lip shape data for each letter,
starting from the abrupt-change point until the smooth state is restored (frames
15-40, abrupt-change state). The details of the algorithm are as follows.

The algorithm inputs three consecutive frames of lip features: LFi−2, LFi−1,
LFi; the current state Si, which can be “smooth state” (S) or “abrupt-change
state” (AC), initialized as “S”; and the current frame count Cnt for the “AC” state.
The output is the segmentation flag Fi, indicating a segmented frame. First, we
initialize SumStd (the sum of the standard deviations of the three frames) to 0
and Fi to False (lines 1-2). We then compute SumStd as the sum of the standard
deviations in each dimension across LFi−2, LFi−1, and LFi (lines 3-7).

If Si is “S” and SumStd exceeds a predefined threshold MINSTD, this
indicates an “abrupt-change point”, so Si switches to “AC” and Fi is set to
True (lines 8-11). During silent reading, the lips remain active, so the standard
deviation stays above the threshold until the user finishes reading and closes
their mouth.

If Si is “AC” and it ends at this frame, we reset Si to “S” and set Fi to
True (lines 12-15). The function Check determines if the “AC” state should
end: if SumStd falls below MINSTD, Si switches to “S”. Two special cases
may occur: 1) Subtle lip movements may cause SumStd to drop prematurely,
exiting “AC” too early. 2) Fast reading may result in consecutive letters being
treated as one sequence since the “S” state is not detected. To address this,



6 Jiaye Leng et al.

Algorithm 1: Data Stream Segmentation
Input : previous lip features LFi−2, LFi−1, current lip feature LFi, current

state Si, current written frames Cnt
Output : segmentation flag Fi

1 SumStd = 0
2 Fi = False
3 for j = 0 → 37 do
4 m = (LFi−2[j] + LFi−1[j] + LFi[j])/3
5 std = (LFi−2[j]−m)2 + (LFi−1[j]−m)2 + (LFi[j]−m)2

6 SumStd = SumStd+
√

std/3

7 end for
8 if (Si == S && SumStd > MINSTD)
9 then

10 Si = AC
11 Fi = True
12 if (Si == AC && Check(SumStd,Cnt) == True)
13 then
14 Si = S
15 Fi = True

we set MINACFRAME to 15 and MAXACFRAME to 60, based on the
observations of 26 letters’ temporal data. The function Check returns True if
Cnt exceeds MINACFRAME and SumStd is below MINSTD, or if Cnt
exceeds MAXACFRAME. Otherwise, it returns False. This prevents exiting
“AC” too early or recording noisy data. However, we advise users to ensure clear
lip movements and avoid reading too quickly.

Sequences denoising Noise significantly impacts the performance of our
method, as the segmentation algorithm relies on detecting “abrupt-change points”
for mode switching, making it sensitive to noise. In the “S” state, even slight
facial jitters can trigger an abrupt change, causing the algorithm to switch to the
“AC” state and record noisy data. Since it’s unrealistic to expect users to keep
their lips perfectly still when not reading letters, an effective denoising algorithm
is necessary. As shown in Figure 3, noise data typically exhibit low frequency
and short duration, with jitter lasting less than ten frames. Based on this, our
denoising algorithm calculates the sum of standard deviations for each dimension
from the 10th frame onward. If this sum falls below a threshold, the data is
considered noisy and discarded. We then normalize sequences shorter than 60
frames by padding them with zeros.

3.2 Letter recognition
We use a neural network-based method to recognize the letters according to the
normalized lip shape sequences when the user reads silently.

Dataset We recruited ten participants (five males, five females, aged 22-30)
from our university to collect training data. Six had prior experience with VR
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headsets. Each participant completed 30 phrases, including randomly generated
phrases from the Mackenzie phrase set [15] and semantic-free phrases to ensure
balanced data for each letter. For the 26 letters, we used the standard lip shapes
from the International Phonetic Alphabet [11]. The space key was represented
by a distinct “pouting” lip shape, designed to be easily distinguishable from the
letters. Participants were instructed to enter text naturally while ensuring clear
and complete lip shapes. In total, we collected 300 phrases (10 participants × 30
phrases), resulting in 8100 sequences (27 characters × 300).

Neural network Lip tracking generates a 37-dimensional data sequence, re-
quiring neural networks capable of processing multivariate time series data. We
consider three options: Long Short-Term Memory (LSTM) [4], Gated Recurrent
Unit (GRU) [5], and Bidirectional LSTM (BiLSTM) [2]. LSTM excels at handling
time-series data by using gates (Input, Output, Forget) to manage long-term
dependencies and address vanishing gradients. GRU, with two gates (Update and
Reset), is simpler and has fewer parameters than LSTM. BiLSTM combines for-
ward and backward LSTMs, allowing the model to capture bidirectional patterns
in the sequence. We incorporate a Leaky ReLU activation function to increase
sparsity and mitigate overfitting. A fully-connected layer follows, outputting a
1×27 vector, with 27 representing the classification categories. The input to the
network is a 60×37 matrix.

(a) (b)

Fig. 4: The confusion matrices for 27 labels (26 letters + space key) on the
validation (a) and test (b) sets. The horizontal axis represents the predicted
labels, and the vertical axis represents the true labels. Each element of the matrices
represents the number of times a given true label was predicted as different labels.
The diagonal of the matrix shows the number of correct predictions for each
letter, and each row sums to 60.

We used the 8100 collected lip shape sequences, split into a 3:1:1 ratio for
training, validating, and testing, to evaluate the classification accuracy of the
LSTM, GRU, and BiLSTM models. All three models achieved notable results,
with BiLSTM, LSTM, and GRU achieving accuracies of 92.72%, 86.30%, and
78.65%, respectively. We further optimized the BiLSTM model by adjusting
training parameters, including learning rate, loss function, batch size, optimizer,
and hidden unit dimensions. The best BiLSTM model had a hidden size of 96.
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Figure 4 (a) shows the confusion matrix for BiLSTM on the validation set, where
letters like ‘B’, ‘C’, ‘F’, ‘K’, ‘M’, and ‘T’ had accuracies between 80% and 90%,
with ‘E’ being the lowest at 71.67%, and the rest above 90%. On the test set
(Figure 4 (b)), accuracy dropped for some letters except ‘X’, ‘Y’, ‘Z’, and ‘space’.
We then calculated the top-4 prediction accuracy (Figure 5), which improved
compared to the top-1. Except for ‘B’, ‘C’, ‘D’, and ‘E’, the accuracy for all other
letters exceeded 80%, suggesting that a multi-choice auxiliary selection method
may enhance usability.

Fig. 5: The probability of the correct predicted results of 27 letters appearing in
the top-4 (blue) versus the top-1 (orange).
3.3 Auxiliary selection

Fig. 6: Head-motion for auxiliary selection.

Head-based selection method To improve text entry accuracy, we allow
users to select from the recognition results. Since our approach is hands-free,
we consider integrating head-based selection methods to minimize user learning
effort. To further enhance accuracy and speed, we integrate a word correction
technique using SymSpell [3], combined with the head-based selection approach,
following similar methods from previous works [8, 23]. Common head selection
methods, such as Dwell and Dwell-free [23], often lead to misselection. Therefore,
we propose a head motion-based selection method to choose between the top four
predictions. As shown in Figure 6, this method detects six head movements: up,
down, left, right, left bias (for Switch), and right bias (for Backspace). The first
four are used to select from the top-4 predictions, while Switch toggles between
letter and word selection.

4 Pilot User Study
Referring to the now popular approach of head selection, we considered adding
the auxiliary selection strategies mentioned in Section 3.3 to our method. In
this pilot user study, we evaluated three potential head-based selection methods:
Dwell, Dwell-free, and ours. There are top-4 candidates of the prediction as well
as the Switch and Backspace keys in the dwell layout.
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4.1 Pilot User Study Design
Participants and Hardware Setup Eighteen participants (thirteen males
and five females, aged between 22-30) from our university participated in this
study. We used a VIVE Pro 2 headset to provide an immersive experience and a
VIVE facial tracker to capture lip shapes. Our computer configuration was the
Intel Core i7 processor with an NVIDIA GeForce RTX 1060 graphics card. The
system was developed with Unity 2021.2.

Task and Procedure This study used a within-subject design with one inde-
pendent variable. Session 1-3 represented Dwell (CC1), Dwell-free (CC2) and
our selection method (EC) respectively, where the dwell time for Dwell was set
to 400ms. Each session required participants to input ten randomly generated
phrases from the Mackenzie phrase set [15], and the order of the sessions was
also randomly assigned. Before starting the experiment, we gave participants
approximately 3 minutes to familiarize themselves with these methods. The two
metrics for this experiment are typing speed and single letter selection time,
where single-letter selection time is the time between the model predicting a
candidate letter and the participant completing the selection. We kept correctly
selected data and excluded incorrectly selected data (the target letter was not in
top-4). Participants were required to fill out a NASA-TLX questionnaire [7] at
the end of each session. A total of 3 (methods) × 10 (phrases) × 18 (participants)
= 540 phrases were collected. The Words Per Minute (WPM) was calculated
following the equation in [14].

4.2 Results
We used a one-way repeated ANOVA to analyze the results of the experiment
and used Bonferroni correction in pair-wise comparisons.

(a) (b)

Fig. 7: Mean typing speed (a) and selection time (b) for three head-based selection
methods. Error bars indicate standard deviation. Asterisks denote statistical
significance (same for all figures below).

Typing Speed & Selection Time Figure 7 shows the average typing speed
and the average selection time of a single letter for the three methods, with details
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Table 1: The typing speed, in seconds.

Condition Avg
± std. dev.

(EC-CCi)
/ CCi

p
Cohen’s

d
Effect
size

CC1 4.53 ± 0.36 22.30% < 0.001∗ 2.56 Huge
CC2 5.26 ± 0.66 5.32% = 0.009∗ 0.47 Small
EC 5.54 ± 0.52

of pair-wise comparisons given in Table 1 and 2. The results of the ANOVA
showed that the different methods had a significant effect on both typing speed
(F1.39,23.63 = 94.06, p < 0.001, η2p = .85) and selection time (F1.01,22.24 = 312.01,
p < 0.001, η2p = .93). For typing speed, pair-wise comparisons showed that our
selection method had a significant improvement compared to Dwell (p < 0.001)
and Dwell-free (p = .009), and there was also a significant difference between
Dwell and Dwell-free (p = .009). The effect size of our selection method compared
with Dwell and Dwell-free were ‘Huge’ and ‘Small’, respectively. For selection
time, pair-wise comparisons showed that our selection method had a significant
reduction compared to Dwell (p < 0.001) and Dwell-free (p < 0.001), and there
was also a significant difference between Dwell and Dwell-free (p < 0.001). The
effect size of our selection method compared with other two were ‘Huge’.

Table 2: The selection time, in seconds.

Condition Avg
± std. dev.

(CCi-EC)
/ CCi

p
Cohen’s

d
Effect
size

CC1 1.18 ± 0.20 53.39% < 0.001∗ 4.24 Huge
CC2 0.73 ± 0.07 24.66% < 0.001∗ 2.86 Huge
EC 0.55 ± 0.05

Workload The average scores for the six questions of the NASA-TLX question-
naire are shown in Figure 8. Over all six questions, the ANOVA results showed
significantly different workloads between the three methods (F2,44 = 77.95,
p < 0.001, η2p = .780). The pair-wise comparisons on overall score showed that
our selection method had less workload on the user, compared to Dwell (p < 0.001)
and Dwell-free (p < 0.001), and there was also a significant difference between
Dwell and Dwell-free (p < 0.001).

Fig. 8: Mean scores for the six individual questions and overall in NASA-TLX for
three head-based selection methods (smaller value is better, from 0 to 10).
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4.3 Discussion

The experimental results support our two hypotheses. Firstly, our head selection
method has a faster typing speed and less selection time for a single letter. The
Dwell and Dwell-free method require the user to control a cursor with the head
and use the head motion to select keys on the layout. This is an unnatural way
of selection because the user cannot freely deflect the head as they are used
to. When using the two methods, we observed that participants moved their
heads slowly at first when making a selection and then sped up as the cursor
approached the target key, while this process was usually absent when using our
head selection method. In addition, the Dwell method requires an additional
period of dwell for selection determination, which results in a longer selection
process. As reflected by the experimental results, the Dwell method had the
slowest typing speed and the longest selection time.

Secondly, our head selection method has a lower workload. The Dwell and
Dwell-free methods require the user to focus on a layout and use the head control
a cursor to make the selection. Some participants reported that this kind of
selection method made them tired quickly, while the orientation-based selection
was simpler and easier, and they could make the right choice without hesitation.
We decided to use our head motion-based selection method as the auxiliary
selection method based on the above analysis.

5 User study
A six-day user study was conducted to evaluate the performance of LipText,
including typing speed and error rates. We divided the participants into a novice
group and a potential expert group to explore how their performance would
improve with the increased use of LipText. The hardware setup for this user
study was the same as the previous pilot user study.

5.1 User Study Design

Participants We recruited ten participants (eight males and two females, aged
between 22-28) to participate in the user study, who formed a potential expert
group and a novice group. The potential expert group participants were the top
five performers from the previous pilot user study. The novice group was five
participants who had not used our LipText, but had previous experience with
VR head-mounted display devices.

Task and Procedure The entire experiment was divided into six sessions, with
each user required to complete one session per day, and in each session the user
was required to complete ten randomly generated phrases from the Mackenzie
phrase set [15]. In each session, participants were asked to complete each session
as ‘quickly and accurately’ as possible. In total, we collected 5 (participants) ×
2 (groups) × 6 (sessions) × 10 (phrases) = 600 phrases. The error rates were
calculated according to [20], Total Error Rate (TER) = Not Corrected Error
Rate (NCER) + Corrected Error Rate (CER).
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5.2 Results
We conducted a mixed-design ANOVA on the experimental results, where ‘session’
(session 1-6) was the within-subject factors and ‘group’ (novice group and potential
expert group) was the between-subject factors.

Typing Speed We found that both ‘session’ (F1.81,14.44 = 202.26, p < 0.001,
η2p = .96) and ‘session’ × ‘group’ (F1.81,14.44 = 4.870, p = .027, η2p = .38)
had a significant effect on typing speed. This indicated that after a period of
practice, participants in both groups experienced a significant increase in typing
speed. And ‘group’ (F1,8 = 24.71, p = .001, η2p = .76) was also found to have
a significant effect on typing speed. In the pair-wise comparisons, significant
differences were found between all session pairs (all p < .01) except for pair 3vs4.
These results indicated that there was still an upward trend in the typing speed
of the participants after six days of practice.

Fig. 9: Mean typing speed of novice group and potential expert group (a), mean
typing speed of 10 participants (b), mean NCER (c) and TER (d) of novice
group and potential expert group of 6 sessions.

Figure 9 (a) shows the daily mean typing speed of two groups. The mean
typing speed of the novice group was 6.99 WPM (s.e. = 0.25), and their typing
speed increased from 5.25 WPM (s.e. = 0.34) on the first day to 8.63 WPM (s.e.
= 0.26) on the last day, raising by 64.38%. The mean typing speed of the potential
expert group was 8.71 WPM (s.e. = 0.25), and their typing speed increased from
6.88 WPM (s.e. = 0.34) on the first day to 9.81 WPM (s.e. = 0.26) on the last
day, raising by 42.59%. Figure 9 (b) shows the daily mean typing speed of all
ten participants, where the fastest typing speed was recorded as 11.13 WPM
achieved by one potential expert participant on the last day.

Error Rates For NCER, the results of ANOVA showed that ‘session’ (F5,40 = .92,
p = .48, η2p = .103) and ‘session’ × ‘group’ (F5,40 = 2.35, p = .058, η2p = .227) had
no significant effects on it, while ‘group’ (F1,8 = 7.62, p = .025, η2p = .488) had
a significant effect on it, and the novice group had a significantly lower NCER
than the potential expert group (p = .025) in the pair-wise comparisons. For
TER, no significant effects were found on ‘session’ (F1.96,15.69 = 2.36, p = .128,
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η2p = .228), ‘session’ × ‘group’ (F1.96,15.69 = 1.25, p = .312, η2p = .135), and
‘group’ (F1,8 = 3.20, p = .112, η2p = .286), and no significant differences were
found in the pair-wise comparisons. The results indicated that multi-day training
did not sacrifice accuracy. Figure 9 (c) and (d) show the mean NCER and TER
for ten participants over six days. The mean NCER and TER of the novice group
for six days were 2.06% (s.e. = 0.19%) and 5.66% (s.e. = 0.79%) respectively.
The mean NCER and TER of the potential expert group for six days were 2.79%
(s.e. = 0.19%) and 7.66% (s.e. = 0.79%).

5.3 Discussion
In term of efficiency, our LipText can reach 11.13 WPM, which is comparable
to the state-of-the-art hands-free methods, such as RingText (13.24 WPM) [23]
and iText (13.76 WPM) [12]. And as we can see in Figure 9 (a) and (b), the
learning curve of the participants is still on an upward trend, and we believe
that the typing speed can still be improved after more time of practice. In terms
of accuracy, the six-day average NCER and TER for the novice group and the
potential expert group are 2.06%, 5.66% and 2.79%, 7.66%, respectively. It can
be found that the TER is higher relative to NCER, and the error rates of the
novice group are lower than that of the expert group. The statistical analysis
results show that the NCER of the novice group is significantly smaller than
that of the potential expert group. We find that the reason why TER is higher
than NCER is that the model is still not accurate enough to predict the letters,
such as ‘B’, ‘C’, ‘D’, ‘E’. The reason for the lower error rates of the novice group
than the potential expert group may be that reading silently at a slower speed
gives a more complete lip shape and thus a more accurate prediction. In terms
of learnability, after six days of practice, the average typing speed of all ten
participants improved by 52.15%, with the novice group improving by 64.38% and
the potential expert group improving by 42.59%. This shows that our LipText is
very novice-friendly and users can master it after a short period of practice.

6 Conclusions, limitations and future work
We have proposed LipText, a lip tracking-based text entry method in VR. Lip
shape features are captured using a facial tracker and analyzed by a neural
network to obtain the letters that the user reads silently. We also used the user’s
head motion to execute auxiliary selection to improve the correctness of text entry.
Our method achieves 8.63 WPM for the novice group and 9.81 WPM for the
potential expert group in typing speed and has the highest typing speed of 11.13
WPM. The error rates are 2.43% and 6.66% for NCER and TER respectively.
Our method also has good learnability.

However, our method still has some limitations: 1) Limited dataset: We
were unable to recruit enough participants, resulting in a smaller dataset, which
prevented us from training a robust model. Additionally, the task is complex:
users’ speech rates are difficult to standardize, and several letters have similar lip
shapes. These issues lead to limited model accuracy and a relatively high TER. 2)
Model selection: We tested only three neural network models, which may not be
the most suitable options for our task. 3) Inefficient selection process: Our method
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uses a two-step selection process, which is not the most efficient. 4) Letter-level
input only: Our method currently supports only letter-level input, and the typing
speed is constrained by the time overhead of the user’s silent reading. 5) Sample
size and bias: The user study had a limited number of participants, with more
males than females, which may introduce bias in the experimental results.

In future work, we plan to improve our method in the following areas: 1)
Build a more comprehensive and generalizable dataset. Additionally, we will
refine the neural network design to achieve more accurate and robust results,
enabling single-step selection or reducing the need for two-step selections. 2)
Redesign letters with similar lip shapes. As observed in the experimental results,
‘space’ achieved high accuracy both in the validation and test sets due to its
distinct lip shape. Therefore, we may redesign letters with similar lip shapes to
make them more distinguishable, improving model accuracy. 3) Incorporate word
lip shape data into the dataset for word-level input, which could significantly
increase the typing speed of our method. 4) Conduct broader user experiments
with a larger and more diverse participant pool to further strengthen the validity
and generalizability of our findings.
Acknowledgments. This work was supported by the National Natural Science Founda-
tion of China through Projects 61932003 and 62372026, by Beijing Science and Technol-
ogy Plan Project Z221100007722004, and by NationalKey R&D plan 2019YFC1521102.

References

1. Adhikary, J., Vertanen, K.: Text entry in virtual environments using speech and
a midair keyboard. IEEE Transactions on Visualization and Computer Graphics
27(5), 2648–2658 (2021)

2. Fu, R., Zhang, Z., Li, L.: Using lstm and gru neural network methods for traffic flow
prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association
of Automation (YAC). pp. 324–328. IEEE (2016)

3. Garbe, W.: {SymSpell} (6 2012), hhttps://github.com/wolfgarbe/SymSpell
4. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with lstm

recurrent networks. Journal of machine learning research 3(Aug), 115–143 (2002)
5. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional

lstm and other neural network architectures. Neural networks 18(5-6), 602–610
(2005)

6. Gugenheimer, J., Dobbelstein, D., Winkler, C., Haas, G., Rukzio, E.: Facetouch:
Enabling touch interaction in display fixed uis for mobile virtual reality. In: Pro-
ceedings of the 29th Annual Symposium on User Interface Software and Technology.
pp. 49–60 (2016)

7. Hart, S.G.: Nasa-task load index (nasa-tlx); 20 years later. In: Proceedings of the
human factors and ergonomics society annual meeting. vol. 50, pp. 904–908. Sage
publications Sage CA: Los Angeles, CA (2006)

8. Jiang, H., Weng, D.: Hipad: Text entry for head-mounted displays using circular
touchpad. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR). pp. 692–703 (2020). https://doi.org/10.1109/VR46266.2020.00092

9. Jiang, H., Weng, D., Zhang, Z., Bao, Y., Jia, Y., Nie, M.: Hikeyb: High-efficiency
mixed reality system for text entry. In: 2018 IEEE International Symposium on
Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). pp. 132–137 (2018).
https://doi.org/10.1109/ISMAR-Adjunct.2018.00051



LipText: Lip Tracking Based Text Entry in VR 15

10. Jiang, H., Weng, D., Zhang, Z., Chen, F.: Hifinger: One-handed text entry technique
for virtual environments based on touches between fingers. Sensors 19(14), 3063
(2019)

11. Ladefoged, P.: A course in phonetics. Thomson Wadsworth 86 (2006)
12. Lu, X., Yu, D., Liang, H.N., Goncalves, J.: itext: Hands-free text entry on an

imaginary keyboard for augmented reality systems. In: The 34th Annual ACM
Symposium on User Interface Software and Technology. pp. 815–825 (2021)

13. Lu, X., Yu, D., Liang, H.N., Xu, W., Chen, Y., Li, X., Hasan, K.: Exploration of
hands-free text entry techniques for virtual reality. In: 2020 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR). pp. 344–349. IEEE (2020)

14. MacKenzie, I.S.: A note on calculating text entry speed. Unpublished work. Available
online at http://www. yorku. ca/mack/RN-TextEntrySpeed. html (2002)

15. MacKenzie, I.S., Soukoreff, R.W.: Phrase sets for evaluating text entry techniques.
In: CHI’03 extended abstracts on Human factors in computing systems. pp. 754–755
(2003)

16. Mott, M.E., Williams, S., Wobbrock, J.O., Morris, M.R.: Improving dwell-based
gaze typing with dynamic, cascading dwell times. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. pp. 2558–2570 (2017)

17. Pham, D.M., Stuerzlinger, W.: Hawkey: Efficient and versatile text entry for virtual
reality. In: 25th ACM Symposium on Virtual Reality Software and Technology. pp.
1–11 (2019)

18. Ruan, S., Wobbrock, J.O., Liou, K., Ng, A., Landay, J.A.: Comparing speech
and keyboard text entry for short messages in two languages on touchscreen
phones. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1(4), 1–23 (2018)

19. Shneiderman, B.: The limits of speech recognition. Communications of the ACM
43(9), 63–65 (2000)

20. Soukoreff, R.W., MacKenzie, I.S.: Metrics for text entry research: An evaluation
of msd and kspc, and a new unified error metric. In: Proceedings of the SIGCHI
conference on Human factors in computing systems. pp. 113–120 (2003)

21. Vertanen, K.: Efficient correction interfaces for speech recognition. Ph.D. thesis,
Citeseer (2009)

22. Whitmire, E., Jain, M., Jain, D., Nelson, G., Karkar, R., Patel, S., Goel, M.:
Digitouch: Reconfigurable thumb-to-finger input and text entry on head-mounted
displays. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1(3), 1–21 (2017)

23. Xu, W., Liang, H.N., Zhao, Y., Zhang, T., Yu, D., Monteiro, D.: Ringtext: Dwell-free
and hands-free text entry for mobile head-mounted displays using head motions.
IEEE Transactions on Visualization and Computer Graphics 25(5), 1991–2001
(2019). https://doi.org/10.1109/TVCG.2019.2898736

24. Xu, Z., Chen, W., Zhao, D., Luo, J., Wu, T.Y., Gong, J., Yin, S., Zhai, J., Yang, X.D.:
Bitiptext: Bimanual eyes-free text entry on a fingertip keyboard. In: Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. pp. 1–13
(2020)

25. Yu, C., Gu, Y., Yang, Z., Yi, X., Luo, H., Shi, Y.: Tap, dwell or gesture? exploring
head-based text entry techniques for hmds. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. pp. 4479–4488 (2017)

26. Yu, D., Fan, K., Zhang, H., Monteiro, D., Xu, W., Liang, H.N.: Pizzatext:
Text entry for virtual reality systems using dual thumbsticks. IEEE Trans-
actions on Visualization and Computer Graphics 24(11), 2927–2935 (2018).
https://doi.org/10.1109/TVCG.2018.2868581


